STAT 201 Chapter 8.1-8.2

Confidence Intervals for Proportion

Recall Proportion Sampling Distribution

- The **mean** of the sampling distribution for a sample proportion will always equal the population proportion: $\mu_{\widehat{p}}=p$
- The **standard error**, the standard deviation of the sample proportion, is:

$$\sigma_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Point Estimate

- Often, we do not know the population proportion.
- We use our sample proportions to make inference on the population parameter

- $m{\cdot}\,\hat{p}$ is our **point estimate** for the population proportion
 - Our 'best' guess for the true population proportion

 Suppose you are in a sports company. Tom is your direct boss, and Jerry is the President of the company.

• Jerry wants to know the winning rate for MLB home games. He asks Tom, and Tom asks you.

- You do not know the truth (population population) and decide sample 2429 games. You find that home teams won 1335 of 2429 games.
- Now, you know sample proportion is $\hat{p} = \frac{1335}{2429} = .549$ and tell your boss "the winning rate for MLB home games is 54.9%"

- Your boss, Tom, is pretty satisfied and tells this results to his boss, Jerry. However, Jerry is skeptical.
- He has some basic knowledge of statistics and he samples 5000 games by himself and find the MLB home game winning rate is 53%. From then on, Jerry teases Tom everyday and Tom decides to fire you.
- Any smarter way to answer Tom's question?

Confidence Intervals

 We use our sample proportions to make inference on the population proportion in the sense of interval

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

 $m{\cdot}\,\hat{p}$ is our **point estimate** for the population proportion

•
$$z_{\frac{\alpha}{2}}\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$$
 is our margin of error

Confidence Intervals Bounds

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$
Lower Bound = $\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$
Upper Bound = $\hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$

Confidence Intervals Assumption

Assumption:

- Data must be obtained through randomization
- We **MUST** make sure that $n\hat{p} \geq 15$ and $n(1-\hat{p}) \geq 15$. This ensures that \hat{p} follows a bell shaped distribution

Confidence Intervals – Common Z's

- We choose z based on our desired confidence level
 - Level of confidence = $(1-\alpha)$ * 100%
 - Level of significance = Error Probability = α = 1- Level of confidence

Level of Confidence	Error Probability (α)	Z
.9 (90%)	.1 (10%)	1.645
.95 (95%)	.05 (5%)	1.96
.99 (99%)	.01 (1%)	2.58

- Our interval will get larger when the margin of error increases
 - When we increase confidence → increase z
 - 2) When we decrease n

Confidence Intervals: Margin of Error

- $z_{\frac{\alpha}{2}}\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is our margin of error
 - As n increases, the margin of error decreases causing the width of the confidence interval to narrow
 - As n decreases, the margin of error increases causing the width of the confidence interval to grow wider

Confidence Intervals: Margin of Error

- $z_{\frac{\alpha}{2}}\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is our margin of error
 - As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
 - As the confidence level increases, z increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals

- We choose our values such that
 - Our point estimate is the mean, the 50th percentile
 - Our lower bound is the $\frac{\alpha^{th}}{2}$ percentile
 - Our upper bound is the $1-\frac{\alpha^{\text{th}}}{2}$ percentile

How We Found the Common Z's: 90%

• For a 90% confidence interval lower bound, we need to find the z with a percentile of

$$\frac{\alpha}{2} = \frac{1 - confidence}{2} = \frac{1 - .90}{2} = \frac{.10}{2} = .0500$$

If we look this up in the z-table we see that a z-score of 1.645 gives us a value very close to .0500

How We Found the Common Z's: 90%

 For a 90% confidence interval upper bound, we need to find the z with a percentile of

$$1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .90}{2} = 1 - \frac{.10}{2} = .9500$$

• If we look this up in the z-table we see that a z-score of 1.645 gives us a value very close to .9500

How We Found the Common Z's: 90%

- **Lower Bound:** If we look this up in the z-table we see that a z-score of -1.645 gives us a value very close to .0500
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 1.645 gives us a value very close to .9500

This is why we have plus or minus z=1.645 for a 90% confidence interval

How We Found the Common Z's: 95%

 For a 95% confidence interval lower bound, we need to find the z with a percentile of

$$\frac{\alpha}{2} = \frac{1 - confidence}{2} = \frac{1 - .95}{2} = .00250$$

If we look this up in the z-table we see that a z-score of 1.96 gives us a value very close to .0250

How We Found the Common Z's: 95%

• For a 95% confidence interval upper bound, we need to find the z with a percentile of

$$1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .95}{2} = 1 - \frac{.05}{2} = .9750$$

• If we look this up in the z-table we see that a z-score of 1.96 gives us a value very close to .9750

How We Found the Common Z's: 95%

- **Lower Bound:** If we look this up in the z-table we see that a z-score of -1.96 gives us a value very close to .0250
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 1.96 gives us a value very close to .9750

This is why we have plus or minus z=1.96 for a 95% confidence interval

How We Found the Common Z's: 99%

 For a 99% confidence interval lower bound, we need to find the z with a percentile of

$$\frac{\alpha}{2} = \frac{1 - confidence}{2} = \frac{1 - .99}{2} = .0050$$

If we look this up in the z-table we see that a z-score of 2.58 gives us a value very close to .0050

How We Found the Common Z's: 99%

• For a 99% confidence interval upper bound, we need to find the z with a percentile of

$$1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .99}{2} = 1 - \frac{.01}{2} = .9950$$

• If we look this up in the z-table we see that a z-score of 2.58 gives us a value very close to .9950

How We Found the Common Z's: 99%

- **Lower Bound:** If we look this up in the z-table we see that a z-score of -2.58 gives us a value very close to .0050
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 2.58 gives us a value very close to .9950

This is why we have plus or minus z=2.58 for a 99% confidence interval

How We Find an Uncommon Z: 98%

• For a 98% confidence interval lower bound, we need to

find the z with a percentile of
$$\frac{\alpha}{2} = \frac{1 - confidence}{2} = \frac{1 - .98}{2} = \frac{.02}{2} = .0100$$

 If we look this up in the z-table we see that a z-score of -2.33 gives us a value very close to .0100

How We Found the Common Z's: 98%

• For a 98% confidence interval upper bound, we need to find the z with a percentile of

$$1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .98}{2} = 1 - \frac{.02}{2} = .9900$$

• If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to .9900

How We Found the Common Z's: 98%

- **Lower Bound:** If we look this up in the z-table we see that a z-score of -2.33 gives us a value very close to .0100
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to .9900

• This is why we have plus or minus z=2.33 for a 98% confidence interval

- Suppose we don't know the winning rate, say p, of MLB home games and want to make an inference (estimation).
- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- Our sample proportion $\hat{p} = \frac{1335}{2429} = .549$

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- Our sample proportion $\hat{p} = \frac{1335}{2429} = .549$
- Check Assumptions:
 - $n * \hat{p} = 2429 * .549 = 1333.521 \ge 15$
 - $n * (1 \hat{p}) = 2429 * .451 = 1095.479 \ge 15$
 - It is safe to assume the distribution of \hat{p} has a bell shaped distribution
 - The data is from a random sample

• 95% CI:

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

$$.549 \pm (1.96) \sqrt{\frac{.549(.451)}{2429}} = (.529, .569)$$

- We are 95% confident that the true population proportion of home team wins is between 52.9 and 56.9 percent.
- We see here that there is a small home field advantage because all of the values in our 95% CI are above 0.5.

• 99% CI:

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

$$.549 \pm (2.58) \sqrt{\frac{.549(.451)}{2429}} = (.523, .575)$$

- We are 99% confident that the true population proportion of home team wins is between 52.3 and 57.5 percent.
- Still, we see here that there is a small home field advantage but we note the interval is larger